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LE’ITER TO THE EDITOR 

Stochastic Schrodinger and Heisenberg equations: a 
martingale problem in quantum stochastic processes 

H Hasegawat and R F StreaterS 
t Physics Department, Kyoto University, Kyoto 606, Japan 
$ Mathematics Department, Bedford College, London NW1 4NS, England 

Received 18 August 1983 

Abstract. The relation between a quantum dynamical semigroup and the associated 
quantum stochastic processes can be formulated by an analogy in operator algebras to the 
martingale problem of Stroock and Varadhan for classical diffusions. It is shown that 
under simple circumstances the formulation yields the explicit solution. We give three 
such examples. 

Quantum dynamical semigroup (QDS) is the notion which was introduced in the last 
decade for the non-commutative operator-algebra version of classical diffusion: some 
important papers in the subject are in theoretical quantum optics by several authors: 
Kossakowski (1972), Hepp and Lieb (1973), Ingarden and Kossakowski (1979 ,  
Lindblad (1976), Gorini eta1 (1976) and others (cf Davies 1976). Recently, consider- 
able effort has been made to describe such quantum diffusions by means of stochastic 
differential equations (SDE) and their integrals that are operator valued (Hudson and 
Streater 1981a, b, Barnett er a1 1982, Streater 1982a, Hudson and Parthasarathy 
1982). 

In this report, we point out that the basic question, namely to find the SDE associated 
with a given QDS (in terms of its generator), can be formulated concisely by the 
so-called ‘martingale problem’ in algebras, that is to say, by the quantum analogue of 
the martingale problem due to Stroock and Varadhan (1969) for classical diffusions. 
We also note that under some special circumstances the problem can be solved within 
the classical framework in terms of what may be called ‘stochastic Heisenberg (or, its 
counterpart of Schrodinger) equation’ aided by the stochastic calculus of It& Explicit 
examples in physics which we show here are as follows: 

(i) harmonic oscillator, 
(ii) Pauli spin, 

(iii) diffusion for Fermi fields. 
Consider a (one-dimensional) classical diffusion process x, ( = x( t ,  U ) )  subject to 

whose frequencies are modulated very fast, and 

the It8 SDE 

dx, = b ( x , ) + a ( x , )  dB(t).  (1) 
A smooth function f of the process x,, f ( x , ) ,  can be related to SDE (1) via the It6 
formula as 
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where L is the generator ( = b ( x )  a / a x + $ a 2 ( x )  a2/axz) of the contraction semigroup 
that represents the diffusion of solutions to (1), and M [  f], denotes a stochastic integral. 
The force M [ f ] ,  has the martingale property 

E(M[fl,l9S) = M[fls, O s s s t ,  (3)  

with respect to the filtration, {9f}rao, generated by the process xr, as well as with 
respect to the filtration generated by B,, the standard Brownian motion. (Here, 9, is 
the a-ring of Bore1 sets generated by {xs; s s ?I.) The classical contraction semigroup 
{ T, = efL; 0 s t < a} inherent in (1) can be deduced naturally from the conditional 
expectation i.e. from 

ff E E{f(x,)l90} 

f, = T,fr=o; T,+,= T,. T,, To=l, IlTfIl~ 1, (4) 

as an element of the LZ(R)-space of functions of x E R, on which we have 

since f,-fo-lA LfT d r  = 0 implies that df,/dt = Lf, holds in a weak sense. 
What is important for the martingale structure of diffusion is the converse to the 

above. Suppose that a classical semigroup (4) defined on the function space with a 
diffusion operator L as its generator is given. Since L provides us with information 
only about the conditionally averaged sample paths, one asks if the complete knowledge 
about the sample paths could be recovered from the semigroup generator L alone. 
This question, to find the SDE ( 1 )  given only the left-hand side of (21, was answered 
by Stroock and Varadhan: these authors were thus able to enlarge the class of the b- 
and a-functions in SDE (1) which lead to a legitimate diffusion process. 

Let us propose, therefore, a similar problem for quantum dynamical semigroups. 
That is, suppose we are given a generator of a QDS defined on an algebra, and ask 
ourselves: what is quantum mechanical ‘sample space’ that conforms to the given 
generator? Since we know that a quantum mechanical time evolution of the system 
variables (i.e. observables) is the Heisenberg motion expressed as a unitary evolution, 
X - t  UTXU, for X E %(Xs), the requirement must bel. 

E { v T x u , I ~ ~ }  = U$XU,) (0  c s c t )  ( 5 )  

for the given QDS map elL defined on the C*-algebra a(%) of all bounded operators 
X defined on the system Hilbert space X. The reference family {%,; -a < t < a} and 
the conditional expectation E{. I gS}, however, should be suitably reinterpreted so that 
the quantum stochastic process X,  = UTXV, is general enough to include the operator 
(non-commutative) martingales (Streater 1982a). Or, from a more physical point of 
view, the underlying Hilbert space of the unitary evolution should be larger than 2: 
it should be %@r where r is the noise space of the heat-bath variables. 

We now show that there exists an elementary class of QDS generators for which 
the above martingale problem has an unambiguous formulation. Let d be a *-algebra 
generated by two elements A and A* such that there exists a self-adjoint element 
Z E  SB for which we have 

(6) [Z, A*]( = ZA* - A*Z) = A*, [Z, A ]  = -A. 

t To find a quantum (or, operator-valued) SDE of unitary evolution associated with a prototype generator 
by the name of ‘martingale problem’ has been proposed also by Parthasarathy (private communication 1983). 



Letter to the Editor L699 

Then, the martingale problem in d, the required equation (2) being now 

x,-x- L x , d ~ = M [ x , ] ,  5: 
with 

(7) 

has the following solution: 

where p (  t )  = B ( t )  - B(-t) ,  B( t ) :  the standard Brownian motion for t E [O, CO], and 
X, = UTXU, is the Heisenberg motion with 

U, = exp[-i(wt+J-).p(t))~].  (10) 

For this U,, the relation ( 5 )  between the conditional expectation and the positive map 
given by the QDS holds. The unitary evolution U, itself satisfies another martingale 
equation 

(-iwZ-;yZ2) U, dT = -i 

It may be noted that the quantum stochastic processes in this example are all induced 
by a single, classical Brownian motion P ( t ) :  the filtration {9,} is the usual increasing 
family of a-rings; these may be associated with the abelian W*-algebras R I =  
L"(R, p,  PI), where R is Wiener space and p is Wiener measure. (r is L2(R, p, 9m) 
in this case.) We also note that such random motions in a quantum system without 
thermal contact with a heat bath may still give rise to dissipation (the so-called 'random 
frequency modulation' (Hasegawa and Ezawa 1980)). 

We first show that the unitary evolution operator U, given by (10) (the unitarity 
is obvious, because P ( t )  is real and Z is self-adjoint) satisfies the martingale equation 
(1 1); a fact which is equivalent to the martingale property of the modified exponential 
of a martingale: this can be deduced most clearly by using the symmetric stochastic 
chain rule (It6 and Watanabe 1976) as follows: 

d U, = ( 3  U, / ap ) 0 d p  ( t ) - iwZU, d t 

= - iJyZU, 0 d p  ( t )  - iwZU, dt 

= -iJ-).ZU, d p  ( t ) + t (  -44;) 'Z2 U, (dp  ( t ) )' - iwZU, d t 

=- iJyZU,  dp(t)+(-ioZ-;yZ2)U, dt. (12) 
Thus, integrating both sides in the interval T E  [0, t ]  and noting that U,=, = 1, the 
relation (11) can be obtained, where the right side is a martingale. When regarded 
as a SDE for the operator U, with initial value 1, it has the unique solution 
(10). This is because the stochastic calculus (including the symmetric chain rule) again 
enables us to manipulate thus: 

U;' 0 d U, = (0 dU,) U;' ( = d log U,) = -i(wt +& d p (  t))Z. (13) 

The validity of these manipulations depends crucially on the commutativity of Z with 
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U,, and with this hypothesis the martingale problem 

U, - 1 - ( - i w Z  - yZ') U, d r = M [  U, ] , I,' 
has the solution 

M [  U,]! = -i &ZU, d p (  r )  ld 
with 

U, = exp[- i (wr+&p(T))~l .  

Next, we consider the Heisenberg motion X + UTXU, with the above unitary operator. 
The symmetric stochastic chain rule again enables us to write 

dX, = UT [(iw dt + i& 0 d p  ( t ) )Z,  XI U, 

= [ (iw d t + id; 0 d /3 ( t ) ) Z,  UT XU,] 

= [ (iw d t + id; d/3 ( t )  )Z, X, ] + & d p  ( t ) [  Z, dX,] 

= [ i J r Z ,  X,] dp( t )  +[iwZ, XI] dt-$y[Z, [Z, Xr]] dt. (15)  

Thus, an integration of both sides of (15)  in the interval of T E [ O ,  t] with initial value 
X,=,,= X yields (7), (8) and (9),  and the fact that (9) yields the unique solution of the 
martingale problem (7) is, as before, the consequence of the Heisenberg motion 
X, = VTXU, to be the unique solution of SDE (15) .  Therefore, our remaining task is 
to show that the unitary evolution operator U, given by (10) really satisfies the 
conditional expectation-positive map relation ( 5 ) .  For this purpose, let us re-express 
(15)  as 

dX,=L,X, dp( t )+LX,  dt  (LM = $472 ,  a ]  and L in (8)), 

that is, the decomposition of the operator stochastic differential dX, into the martingale 
part and the bounded-variation part. The Heisenberg motion X, is then 

Xr = exp[p ( t )LM + ~L]X = exp[p ( t)LM]( erLX),  

since LM commutes with L. A more general connection of X, with X, at an earlier 
time s < t may also be expressed as 

Xr = u$Xsur,s (16 )  

again because of the commutativity between LM and L. Now, E{exp[(p(t)- 
p(s ) )LM] lSs }  = 1 by virtue of the stochastic independence between the processes 
P ( t ) - P ( s )  and p ( s ) ,  s s t ,  and hence the relation (5) follows. 

It may be observed in the above that the necessary tools for the stochastic processes 
are available within the classical framework. Our results can be summarised by the 
two forms of SDE, i.e. the Schrodinger SDE and the Heisenberg SDE (but in terms of 
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the so-called Fisk-Stratonovich symmetric differentials) as follows: 

( S )  i d U, = wZU, dt +&ZU, 0 d p (  i), 

(H) dXr=iloZ,Xr]dt+i~JyZ,Xrlodp(t). 

The general solution of ( S ) ,  Ut,s given by (17), constitutes a two-parameter family of 
unitary operators, and satisfies the time-reversal symmetry (symmetric stochastic 
integrals (It6 1976)) 

U:, = U S J .  (19) 
We now show two elementary examples of the above. 
(i) Harmonic oscillator: Z =  a*a, A = a ( a :  boson annihilation operator). The 

martingale problem for this system may be compared with the question of Senitzky 
(1960), i.e. to find out an operator Langevin equation for a damped harmonic oscillator 
that retains the canonical commutation relation. Our answer here is, however, basically 
different from the one which satisfies the KMS condition (Streater 1982b). 

(ii) Pauli spin: Z = id, A = U' - i aY.  The Heisenberg motion U* ( = ox f b y )  
UTU' U, is shown to give rise to a Larmor precession of the spin in an inhomogeneous 
magnetic field with the Lorentzian (Cauchy) distribution, familiar in spin echoes 
(Lindblad 1980): the semigroup map with the generator (8)  here is equivalent to the 
average of the Larmor precession over the Cauchy field-distribution. 

Our third example depends on the theory of the ItWlifford integral (Barnett et 
a1 1982). Let the 'system' Hilbert space be X = C 2 " ,  identified with Fermion Fock 
space over n Clifford elements (L1,. . . , (L,,. Let Y l ( t ) ,  . . . ,Y , , ( t )  be n independent 
anticommuting copies of the ItWlifford process: they act on the noise space r. Let 
5 k ( X 1 , .  . . , X,,, t )  ( j ,  k = 1 , 2 , .  . . , n )  be self-adjoint, even, time-dependent functions 
of n self-adjoint operators X I ,  . . . , X ,  on %@T: let G , ( X , ,  . . . , X,, t )  ( j = 1,2,  . . . , n )  
be odd, self-adjoint, operator-valued functions. If F and G are adapted and obey 
Lipschitz conditions, then the system 

dXI(t) FIk(Xl(t), . . , Xn(t)l f) d q k ( f ) + G I ( X i ( f ) ,  . . . xn(t), t )  dt (20) 
k 

has a unique (odd) adapted solution ( X I ( ? ) ,  . . . , X , , ( t ) )  for each (odd) initial value 
( X l ( 0 ) ,  . . . , X,,(O)) acting on X The proof of this is a slight modification of Barnett 
et a1 (1983) and we omit it. We choose X,(O) = (L,, the Clifford elements on 2, which 
obey 

(L&k + (Lk(L1 = 2 6 1 k  (CAR).  (21) 
It is possible to choose F, G so that the solution XI(?) obeys the CAR for all time. 
Suppose this to be the case. Then for each t there is a unique C*-algebra isomorphism 
'Tr from the Clifford algebra %' generated by +bl,. . . , (L,, onto the Clifford algebra 
generated by X I ( ? ) ,  . . . ,X,,(t), such that T&= X I ( ? )  for each t. A function of 
$ 1 , .  . . , (L,,, that is, an operator f~ %', can then be made to evolve in time by f r  = .r,f. 
Such a function has a unique expansion 

f=aOl+Ca,(L~+ 2 a / k ( L ] ( L k + .  . .+a1 n ( L 1  * .  . $n. 
I i < k  

This leads to 
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We can then unambiguously calculate 

df,(Xl(t)7 1 . . 9 X,(t)) =f,(Xi +dX17. . 7 Xn +dXn)-f,(Xi,. . . 9 Xn) 

=I (af/axl)  dX, -+ ( a 2 f / d x l  ax,) dXl dxk 
I i < k  

up to second order, where the formal symbols d/aXl, a2/dXl axk are introduced to 
stand for the coefficients of dXl and dXl dXk. In popular parlance, f is a ‘superfield’. 
We now substitute for dXl from (20), and integrate it from s to t. This yields 

f(x(t)) -f (X(s) )  = Isf 2 f ( X ( ~ ) )  dr+[stochastic integral] 

where 2 is the ‘second-order differential operator’ 

and the [stochastic integral] is given by j: x , , k (a f / aXj )qk  d q k .  Since the stochastic 
integral is a martingale, it drops out when we condition onto time s: putting s = 0, we 
get 

W(X(t)) l t ime =O> = f ( $ ) +  Wf(X(.r))lO> d7, (22) ld 
i.e. the left-hand side solves the ‘diffusion’ equation af /a t  = 2f in superspace. A 
satisfactory answer to the corresponding martingale problem, converse to the above, 
requires a more detailed analysis which must be postponed. 

Nevertheless, the above result generalises the work of Applebaum and Hudson 
(1983), who treat the linear case with one degree of freedom, in which case the second 
derivative cannot occur. Our solution exhibits some of the structure desired by Frigerio 
and Gorini (1983), while avoiding the stationarity and the limit needed there. 

While this manuscript was being prepared, we learnt of the more general set of examples 
given by the method of R L Hudson and K Parthasarathy: we would like to thank 
them for some very useful discussions. We are indebted to J R Klauder and T Yulick 
at the Bell Laboratories for a quick preparation of the manuscript. 
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